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J. Phys. A: Math. Gen., 13 (1980) 397-416. Printed in Great Britain 

Generating functions for plethysms of finite and 
continuous groupst 
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$ Centre de Recherches de Mathkmatiques Appliqutes, Universitt de Montreal, Montreal, 
Quebec, Canada 
§ Physics Department, McGill University, Montreal, Quebec, Canada 

Received 26 March 1979 

Abstract. Generating functions (also Molien functions or Poincare series) formerly used to 
study only completely symmetrical components of tensor products (symmetrical plethysms) 
are developed for calculation of general plethysms. Particular generating functions involv- 
ing compact Lie groups as well as finite groups are found and corresponding integrity bases 
are calculated. The first examples of a novel type of generating function are found. They 
correspond to antisymmetric or symmetric plethysms in which the number of factors in the 
tensor product is fixed but the representation on which the plethysms are based runs through 
all irreducible representations of SU(2). A new type of transitive relation between pairs of 
Lie algebra, the subjoining of one to another, is demonstrated and exploited. 

1. Introduction 

One of the chief quantum principles, the impossibility of distinguishing identical 
particles, imposes a definite symmetry with respect to interchange of particles on the 
wavefunction of a many-particle system; the wavefunction is symmetric (antisym- 
metric) with respect to interchange of bosons (fermions). For a system of p identical 
particles with internal degrees of freedom, the spatial and internal parts of the 
wavefunction transform according to two irreducible representations of the symmetric 
group S,, which complement each other to yield this required overall symmetry. The 
spatial states of a single particle usually constitute a r multiplet or r tensor (which 
transforms according to a definite representation r) of a finite or compact Lie group G; 
similarly, the internal states form a r' tensor of a group G'. 

Thus, in constructing a p-particle wavefunction, one encounters the following 
mathematical problem: given an irreducible representation {A} of S, and a r tensor of 
G, decompose r"', the component of the tensor product of p copies of the r tensor with 
exchange symmetry {A}, into a direct sum of irreducible tensors of G. This problem is 
called the calculation of the plethysm r{A'. One writes 

{A} 1 

Here m, is the number of irreducible r, tensors of G in the plethysm r"', We specify 
irreducible representations of S, by {A} = { A l ,  A2 ,  . . . , A,} where A, is the number of 

t Supported in part by the Natural Sciences and Engineering Research Council of Canada and by the 
Ministere de I'Education du QuCbec. 
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columns of i boxes in the corresponding Young tableau (see figure 1); II is the dimension 
of the r tensor and 

n 

i = l  
p = iAi. (1.2) 

The possibility of the decomposition (1.1) follows from the fact that S, trans- 
formations commute with G transformations, so that the tensor product rOr0. . . Or 
( p  times) can be decomposed according to the group G x S,. 

fj . . . . .  ..... ..... p ..... 0 
U . .  . .  . .  n '  

Figure 1. The Young tableau corresponding to the representation { h l h ~ . .  . A n }  of S,. 

Of equal importance to the plethysm computation is the explicit construction of the 
corresponding tensors. It turns out that for given G and r, they may be constructed 
from a small number of 'elementary' tensors which constitute the integrity basis of the 
problem. 

Our purpose in this paper is twofold: to calculate plethysms for finite and compact 
Lie groups, and to study the corresponding integrity bases. Both problems are solved at 
the same time by the generating function technique. 

The concept of plethysm was introduced by Littlewood (1943a, b, 1958). Its 
importance in quantum physics has been stressed by a number of authors (Butler and 
Wybourne 1971, Moshinsky 1967, Kota 1977). 

Several recent papers (Gaskell et a1 1978, Patera et a1 1978, Desmier and Sharp 
1979, Patera and Sharp 1979a, b) derive generating functions for polynomial tensors, 
i.e., tensors whose components are polynomials in the components of a given tensor of 
a finite or compact Lie group G. Polynomial tensors of degree p constitute the 
symmetric plethysm corresponding to the representation {A} = { p ,  0, . . . , 0) of S,; the 
Young tableau consists of one row of p boxes. In this paper we generalise these 
methods to include plethysms of all symmetries. 

2. Computation of plethysm generating functions 

In this section we first elaborate the well known relation between irreducible represen- 
tations of the symmetric group S, and those of the group U(n) of unitary n x n matrices 
(Weyl 1946). One is led naturally to the conclusion that the calculation of plethysms 
based on a r tensor of a group G is equivalent to calculation of branching rules for 
U(n) 3 G, where n is the dimension of r. 

To denote a representation of G, or a tensor which transforms by it, we use r, Ti, etc; 
if G is a compact Lie group and the tensor is irreducible we may use ( p ) =  
(p1,  pz, . . . , pi), where pi are non-negative integers and 1 is the rank of G.  Irreducible 
representations of S, are labelled by {A} = { A l ,  A*,  . . . , A n }  as explained in 8 1. We 
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specify irreducible representations of U ( n )  by ( A )  = ( A l ,  A 2 ,  . . . , A,,), where Ai are 
non-negative integers. 

The tensor product (1,0, . . . ,O)' of p copies of the defining representation of U ( n )  
is a (reducible) tensor of the product group U ( n )  X S,. It decomposes as 

where the sum is over those irreducible representations of S, whose Young tableaux 
contain no columns longer than n. The plethysm (1,0, .  . . , O){A} is the coefficient 
of {A} on the right of (2.1), i.e., an irreducible ( A )  tensor of U ( n ) .  The multiplicity of 
(A){A} in (2.1) is unity, while the multiplicity of ( A )  of U ( n )  is the dimension D{A} of the 
S, representation {A}: 

where 

All D{,,} ( A )  tensors are obtained from any one by applying the permutations of S,. We 
ignore this obvious repetition of U ( n )  tensors from now on. 

These considerations imply the following procedure for finding plethysms based on 
a r tensor of a group G (King 1974): embed G in U ( n ) ,  where n is the dimension of r, so 
(1 ,0 , .  . . , 0) of U ( n )  contains r once. Then the plethysm consists of the tensors 
Oi ri of G into which a ( A )  tensor of U ( n )  decomposes. Our problem is reduced to that 
of finding the generating function for the branching rules U ( n )  2 G. General methods 
have been described previously (Gaskell et a1 1978, Patera and Sharp 1979a). In fact, 
since U ( n )  = SU(n)  x U(l)  it is necessary to compute only the generating function for 
SU(n)  13 G;  the U( l )  label An is the number of columns of n boxes, and its value has no 
effect on the G content of the plethysm. 

Incidentally, a useful dimensionality relation follows from (2.1): 

The dimension D(A)  of the U ( n )  representation ( A )  is 

where 
n 

l i=  C & + n - i .  
k = i  

(2.4) 

By now, generating functions for SU(n) 2 G, with G semi-simple and n s 4, are 
known for most cases of interest. The ab initio computations are generally lengthy 
when n = 4, and for some G are about the limit of what can be computed by hand. Since 
plethysms involving U ( n ) ,  n 2 5 ,  are also interesting, it is important to use any available 
shortcuts. In the remainder of this section we list a few ways of obtaining new 
generating functions by combination of known generating functions or by making use of 
known integrity bases: 
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(1) Often one needs plethysms based on a reducible r tensor of G;  the generating 
function can be constructed in terms of those based on the irreducible tensors 
comprising r. For simplicity suppose r = rl Or2, where the irreducible tensors rl and 
r2 are of dimension n1 and n2 respectively, and n l + n 2 =  n. First one writes the 
generating function for SU(n) 3 SU(nl) x SU(n2) x U(l) (it is possible to construct such 
a generating function for any n l ,  n2 using the results of Mickelsson (1970)). Then one 
‘substitutes’ into it the generating functions for SU(nl) 3 G and SU(n2) 2 G. What is 
involved in such a ‘substitution’ is explained in 80 3 and 4. At this stage the G 
representations occur as tensor products of pairs of representations, one from SU(nl) 
and one from SU(n2). To decompose the products, one needs the Clebsch-Gordan 
generating function if G is continuous, or the Clebsch-Gordan series if G is finite. 
Examples of the procedure are found in 0 0  3 and 4. 

(2) It frequently happens that G is not maximal in SU(n), but occurs in the chain 
U(n) 3 SU(n) 2 G’ 2 G. The problem may then be solved in two steps. One starts with 
the generating functions for U(n) 3 G’ and for G’ 2 G and then ‘substitutes’ the second 
in the first. Moreover it is easy to retain the information concerning G’ in the U(n) 3 G 
generating function. 

(3) Even when G is maximal in SU(n) it is sometimes possible to find a group G” 
which plays the same role as the intermediate group G’ of the preceding paragraph. An 
example is found is 0 3 and is discussed in 0 6. 

(4) Elements of integrity bases and their syzygies (polynomial relations between 
elements of a basis) are found in the literature for many group-subgroup 
decompositions; it is straightforward to rewrite such information in terms of a generat- 
ing function. 

( 5 )  Sometimes an integrity basis and its syzygies can be guessed after examining a 
number of low-lying representations of the parent group. The corresponding generat- 
ing function can be checked by converting it into the generating function for represen- 
tations of a lower subgroup or for weights and comparing it with the known generating 
function. When the conversion is too lengthy to carry out analytically, the comparison 
can be made numerically with the help of a computer by giving random values to the 
dummy variables on which the generating function depends. Although inelegant 
mathematically, this method is practical when used with caution. 

3. Plethysms for compact Lie groups 

In this section we describe the generating function and related notation, explain the 
procedure for substituting one generating function into another, and calculate a number 
of plethysms for compact Lie groups. 

The generating functions depends on n + 1 auxiliary variables; n is the dimension of 
r and 1 is the rank of G.  When expanded into a power series, 

s ( A l ,  A2, . . . , A, ; M1, M2,  . . . ! Mi) = A” mA,,MF 

n i (3.1) 
AA n M ,  = n M?, 

1 = 1  1’1 

the first n variables carry the plethysm labels A l ,  A2,  . . . , A, and the other I variables 
carry the G-representation labels k l ,  k2 ,  . . . , pi. A term AAmA+M” in (3.1) says that 
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the irreducible representation (p )  of G is contained in the plethysm I?{*’ exactly m,,+ 
times. 

We now explain how one generating function may be substituted into another. Let 
X ( N ,  M )  be the generating function for G’ 3 G (G-representation labels carried by M, 
G‘ labels by N )  and $(A, N )  be that for G f ’ 3  G’ (G” labels carried by A). Then the 
generating function @(A, N, M )  for G” 3 G’ 2 G is 

9 ( A ,  N, M )  = ResN,[$(;\, N(N’)-’)X(N’,  M )  fi (N:)-’] 
13.2) 

i = l  

= ResNJ[$(A, N’)X(N(N’)-’ ,  M )  i = l  fi (Ni)-’] 

where X ResNj means the sum of residues of poles of the variables N’ inside their unit 
circles. In order to decide whether a pole is inside the unit circle, regard variables other 
than the variables N’ as being less than unity in magnitude, and the N’ themselves as 
being just outside the unit circle. The two forms (3.2) are obtainable from each other by 
the substitution N :  + (N:)-’ ,  i = 1,2 ,  . . , , lGr; use whichever is easier to evaluate. The 
role of the variables N in (3.2) is to preserve the information about the intermediate 
group G’; if that information is not required, the variables N may be set equal to unity. 

We turn now to the generating function for plethysms based on a reducible tensor 
r’0Y of G. Suppose that the generating functions %“(A’, M’) and %”(A”, M”) for 
SU(n’) 3 G and SU(n”) 3 G, where n ’  and riff are the dimensions of r’ and r” respec- 
tively, are known. We also assume that we have the generating function 
%‘(A, A’, A“, 2)  for SU(n’ + n”) 3 SU(n‘) x SU(n”) x U(1). The U(1) label, carried by 2, 
is chosen to be the degree in the tensor r’. 

In order to get the function %(A, M,  2)  for SU(n’+ n”) 3 G xU(1) we proceed as 
follows. Substituting gf(A’ ,  M’)”’(A’’, M”) (it is the generating function for SU(n’) x 
SU(n”) 3 G X G) into %(A, A’, A”, 2)  according to equation (3.2), one obtains a 
generating function $(A, M‘,  M“, 2)  for SU(n’+ n“) 2 G x G x U(1). For the final step 
one needs the generating function %?(M‘, M”, M )  for G x G 3 G, i.e., the Clebsch- 
Gordan generating function for the group G.  Substituting %?(AT, M“, M )  into 
$(A, M’, M”, 2)  according to (3.2) yields %(A, M, 2). Multiplying 8 by (1 - 
A,,,+,,Z‘”)-’, one obtains the generating function @(A, M,  2)  for plethysms based on 
r’OI”‘ (the dummies A now include the additional U(n’+nf’) dummy A,,,+,,,,; the 
variable 2 carries the degree in I?’). 

In case G is the special unitary group SU(n), and r’ and/or r” its defining 
representation, the functions 9’ and/or P’ are trivial and may be substituted into X ,  to 
obtain 8, by the replacements A‘+ M’ and/or A“+ M”. 

There follows a number of exzmples of generating functions for plethysms. 

3.1. Plethysms based on (1, 0, . . . , 0) of U(n) 

For this trivial case it is obvious from the discussion of 0 2 that the required generating 
function is 

-1 

9 ( A ;  M )  = ( fi (1 - AiMi)) 
i = l  

(3.3) 

(3.3) becomes the generating function for plethysms based on (1,0, . . . , 0) of SU(n) if 
M,, is set equal to unity. 



402 J Patera and R T Sharp 

3.2. Plethysms based on (2) of O(3) 

Here (2) is the three-dimensional (vector) representation. The O(3) content of U(3) 
representations is well known (Bargmann and Moshinsky 1961) and the required 
generating function is 

The exponents of M labelling the O(3) representations are double the angular 
momenta. 

3.3. Plethysms based on (10) of Sp(4) 

(10) is the quartet of Sp(4). Since Sp(4) and SU(4) are locally isomorphic to O(5) and 
O(6) respectively, the generating function for SU(4) 3 Sp(4) is the same as that for 
O(6) 3 O(5). The well known integrity basis for that problem (e.g., Sharp and Lam 
1969) allows one to write 

9 = [( 1 - AlM1)( 1 - A2M2)( 1 - A2)( 1 - A3M1)( 1 - A1R3M2)(1- &)]-I. 

(3.5) 
The factor (1 -A4)-' takes account of the fact that we are dealing here with U(4). 

3.4. Plethysms based on (1)(1) of SU(2) x SU(2) 

The embedding of SU(2) x SU(2) in SU(4) is that of the Wigner supermultiplet model of 
nuclear physics. Our SU(2) representation labels are all integers; they equal twice the 
corresponding angular momenta or isospins. The integrity basis for SU(4) 3 SU(2) x 
SU(2) is known (Sharp and Lam 1969, Patera and Sharp 1979a); when transcribed as a 
generating function for plethysms it becomes 
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3.5. Plethysms based on (01) of O(5) 

No integrity basis or generating function for SU(5) 3 O(5) appears in the literature; it 
would be extremely tedious to deduce it from the generating function for SU(5) weights. 
O(5) is maximal in SU(5), but it still possible to utilise an intermediate subgroup, SU(4), 
to facilitate the calculation. Some multiplets of O(5) appear in SU(4) multiplets with 
negative coefficients. Details are found in § 6. The required plethysm generating 
function turns out to be 

3.6. Plethysms based on (1, 0, . . . , 0) O(0, 0, . . . , 0) of SU(n) 

The embedding of SU(n) in SU(n + 1) is the canonical one, whose integrity basis is well 
known. The corresponding plethysm generating function is 

where MO and M ,  are to be replaced by unity. The U ( l )  label carried by Z is the degree 
in the n-plet (1 ,0 , .  . . , 0 )  of SU(n). 

3.7. Plethysms based on (1) O (1) of SU(2) 

The ingredient generating functions are Y(A, M ' ,  M",  2)  for SU(4) 3 SU(2) x SU(2) x 
U(1) and Ce(M', M", M ) ,  the SU(2) Clebsch-Gordan generating function. From the 
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SU(4) 2 SU(2) x SU(2) X U(1) integrity basis (Sharp 1972) we get for the SU(4) 3 

SU(2) x SU(2) x U(l)  function 

1 
(1 - AlM’Z)(  1 - AIM”)( 1 - A2Z2)(  1 - A2)( 1 - R3M’Z)( 1 - A3M”Z2)  

- - 

+ 1 

The SU(2) Clebsch-Gordan generating function is, trivially, 

1 L 

(1 - M’M)(  1 - M”M)( 1 - M’M’’) ’ %(MI, M”, M )  = 

(3.9) 

(3.10) 

Substituting (3.10) into (3.9) with the help of (3.2), and multiplying by (1 -A4Z2)-’ 
we get 

g= 
A1A3Z2 ) l +  

1 

K 1 
(1-AZ)(1-A2Z2)( l -A4Z2) 1-h2Zkf‘M” l - A l A 3 Z 2  

((1 -hlZM’M)(1-*rM1’M)(l-*3ZM’M) 
(1 -A3Z2hrl”M)(1 -AlA3Z3M‘M”) 

M in (3.11) carries the SU(2) label, Z carries the degree in the first SU(2) doublet, and 
M‘ and M“ carry the representation labels of the intermediate SU(2) x SU(2) group. 

3.8. Plethysms based on (1, 0, . . . , O)(O) O(0, 0, . . . , O ) ( l )  of SU(n) X SU(2) 

The integrity basis for SU(n + 2) 3 SU(n) x SU(2) x U(1) is given implicitly oy Mickels- 
son (1970) and explicitly by Sharp (1972). When translated into a generating function 
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and multiplied by (1 -Ant2Zn) - l  it becomes 

where A : =  Akh'fkZk, A i =  hkMk-1Zk-', A i =  i l k k f k - 2 z k - 2 ,  A,, = 
A,AjM,-1M,-1Z'i1-2, MI, M 2 , .  . . , Mn-l carry the SU(n) labels, M the SU(2) label, 
MO = M,, = 1, M-l = Mn+l = 0, Z carries the degree in the SU(n) n-plet. The sum in 
(3.12) is over all sets of pairs (including the null set) [i, j ]  satisfying the following 
conditions: (i) for each pair (i ,  j )  we have 1 < i S j - 2 s n - 1; (ii) no two pairs may 
overlap, i.e. have i < i' < j < j '  or i' < i < j '  < i ;  (iii) there must be no 'internal spaces', 
i.e., for each pair (i, j )  there must be j - i - 2 other pairs (i', j ' )  with i s i' and j ' s  j .  The 
product n [ k ]  is over all k for which 1 < k < n + 1 and for which there is no pair (i ,  j )  of 
[i, j ]  such that i < k < j ;  II' is over those pairs (i, j )  of the set [i, j ]  for which either (i) 
there is no other pair ( i f ,  j ' )  of [i, j ]  for which i f  < i and j < j '  or (ii) there is at least one 
other pair of [i, j ]  for which i f  < i and j '  = j .  

3.9. Plethysms based on (lO)(OO) 0 (OO)(lO) of SU(3) x SU(3) 

The integrity basis for this problem is given implicitly by Mickelsson's (1970) branching 
rules. We have determined it by examining the SU(3) x SU(3) x U(l )  content of a large 
number of low-lying representations of SU(6). Since we have not written it as a 
generating function (it would be a sum of 45 fractions) or checked it analytically, it is at 
present an educated guess; however we are reasonably sure it is correct. 

The integrity basis contains 25 elements, h6Z3 and 24 others, which we 
denote by letters, in order to refer to them more easily below. 
A ~ 1 A ~ 2 A ~ 3 A ~ 4 A ~ 5 M ~ 1 M ~ 2 M ~ m ~ M ~ m ~ Z Z  is denoted by (hlh2h3h4h5; ml ,  m2, 
m i ,  mi ,  z ) ,  where ml ,  m2 and mi,  m i  are the labels of the two SU(3) groups and z is the 
degree in the first SU(3) x SU(3) triplet. The remaining 24 members of the integrity 
basis are 

a = (10000; 10,00,1)  

b = (01000; 01,00,2)  

a ' =  (10000; 00,10,0)  

c = (01000; 10,10,1)  

b '=  (01000; 00,01,0)  

e = (00100; 01,10,2)  

d* = (00100; 00, 00,O) 

c* = (00010; 01,01,2)  

a'* = (00001; 00,01,3)  

f = (10100; 01,01,2)  

g ' =  (10010; 01,00,2)  

j *  = (01010; 01,10,2)  

g* = (01001; 00, 10,3)  

d = (00100; 00, 00,3)  

e* = (00100; 10,01,1)  

b'* = (00010; 00, 10,3)  

b* = (00010; 10,00,1)  

a* = (00001; 01,00,2)  

g = (10010; 00,01,3)  

h = (10001; oo,oo, 3) 

k = (01010; 00, 00,3)  

g'* = (01001; 10,00,4)  

f *  = (00101; 10, 10,4) .  

j = (01010; 10 ,01 ,4)  

Because of syzygies the following pairs of basis elements should not appear in the same 
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product: cf, cg, cg ' ,  ch ,c* f* ,  c*g*, c*g'*, c*h,  eg, eg'*, ej, ek ,  e*g*, e*g' ,  e*j*,  e*k ,  f f * ,  
f g * ,  fg '* ,  fi, fi*, f k ,  f *g ,  f *g ' ,  f *g* ,  f *i, f * k ,  a * ,  g d * ,  gi*, g 'g*,  g'g'*, g'i,  g*i7 g'*j*, ii*. 

3.10. Two-rowed plethysms based on (10. . . O ) ( l )  of SU(n) x SU(2) 

The structure of this generating function is independent of n for n 2 5, and in fact can be 
determined from the solution of the problem for n = 3. The result for n 2 5 is 

@.x= 
1 

(l-RlMlT)(l-ApM~)(l-h~M~)(l -A;M:)(l -RlA2M3T)(l-h;M4) 

A;MIM3 T2 + A;MIM2M3 T2 1 + A:h;M,M2M3 + 
((1 -A:A2M1M3)(1 -R:M2) (1 -h2M2T2)(1 -h;M1M3T2) 

R2M2T2+ hlA2M1M2T +A1A:M2M3T+ R:A:M1M;M3T2 ). (3.13) + 
(1 -A2M2T2)(1 -A:M2) 

M I ,  M2, M3, M4 carry the first four SU(n) labels, T the SU(2) label. For n =4,  put 
M4 = 1 ; for n = 3, put M4 = 0, M3 = 1 ; for n = 2, put M4 = ,443 = 0, M2 = 1. 

We determined 9 by examining the SU(3)XSU(2) content of low two-rowed 
representations of SU(6). It was checked by converting it to a generating function for 
SU(3) x SU(2) weights and comparing numerically with the corresponding generating 
function for SU(3) x U( 1) weights in two-rowed representations of SU(6), obtained 
from the SU(6) 2 SU(3) x SU(3) x U(l)  generating function corresponding to the 
integrity basis found in subsection (3.9). 

The chain SU(6) 2 SU(3) x SU(2) is of physical interest in connection with the quark 
model (So and Strottman 1979). For two-rowed representations of SU(6), the generat- 
ing function (3.13), with M4=0, M3= 1, defines a complete set of states in the 
SU(3) x SU(2) basis; Al and h2 carry the first two SU(6) representation labels. 

4. Plethysms for finite groups 

The generating function for plethysms based on a representation r of a finite group G is 
a particular case of a generating function 24 for reduction of representations of a 
continuous group G' to representations of its finite subgroup G. In our problem 
G' = U(n), where n is the dimension of r. An a b  initio method of doing that would start 
with the generating function 

/''(A, W )  = c AA mA\,wWw (4.1) 
A w  

for characters of representations of G' (Patera and Sharp 1979b). In (4.1) the 
exponents of A fix an irreducible representation of G' and mA,w is the multiplicity of a 
weight w in the representation ( A ) .  One substitutes for the variables of the character 
the numerical values corresponding to each class s of elements of G, thereby converting 
/"(A, W )  into a generating function 

for characters xs,,, of the (reducible) representation of the subgroup G contained in (A 1. 
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Multiplying (4.2) by the complex conjugate character ,Y:~ of the irreducible represen- 
tation r i  of G, and summing over s, one gets the desired generating function 

Bi(A) = nA,iAA (4.3) 
A 

where nA,i is the multiplicity of ri in ( A ) .  
Again the general procedure can often be shortened using the artifices of § 2. For 

plethysms based on representations of point groups considered below one can always 
use one of the chains 

U ( n )  =, O ( n )  3 O(3) 13 G 

U ( n )  3 Sp(n) 3 SU(2) 1 G 

( n  odd) 

( n  even) 
(4.4) 

and profit from the known generating functions for O(3) 2 G and SU(2) 2 G (Patera et 
a1 1978, Desmier and Sharp 1979) and substitute them according to (3.2) in the 
generating function U ( n )  =, O(3) or U ( n )  3 SU(2). 

Plethysm generating functions based on two-dimensional representations of a point 
group G differ only by a factor (1 - A2)-l from the generating functions for SU(2) 3 G. 

For plethysms based on the vector representation of G one substitutes the generat- 
ing function for O(3) 11) G into the generating function (3.4) for U(3)  2 O(3) replacing 
M 2  by L with the result 

where (1 - L2)Bi(L) is the generating function for O(3) 2 G and {A, -A2} denotes a 
term with Al and A2 interchanged; exponents of L are the angular momenta labelling 
O(3) representations. 

Below we list the generating functions Bi, i = 1,2,3,4,5,  for plethysms based on the 
three-dimensional irreducible representation rs of the octahedral group 0 (rl is the 
identity representation; T2 is the pseudoscalar representation; r3 is the two-dimen- 
sional one; r4 and T5 are of dimension three; T5 is the defining representation): 

1 
(1 - A l ) ( l  - A i ) ( l  -&)(I -A:L3)(l -AiL4) 931 = 

(4.6) 
1 

l-A2L 
+ [ 1 + L3(A& + AlA; + A:A2 + A d ;  + A:A2)1) 

L6 
(1 -A~) (1 -A~) ( l -A3) (1 -A:L3) ( l -A~L4)  3 2  = 
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3 [ ( A ~ + A ~ + A ~ A 2 ) L + ( A ~ + A ~ A ~ + A ~ + A ~ A ~ + A ~ A 2 ) L 2  
1 

X i l - A 2 L  

+ (A:A2 + AIA: + A; + A:& + A:Az + AlA:)L3 

+ (A:A: + A:A;)L4 + A:A:LS] 

+ [A:L3+(A:+A;lA2+A:A:+A:A: 

+ A: A2 + A;'A; + A: A: + A:Ai)Ls 

+(A:+ A:A2+A;'Ai+ A:A$+ AfA2+A:A;+ A;A:+A:Ai)L6 

+ (A: A2 + A: A: + A; A: + A:A2 + A%; + A: A$ + A?A:)L7]). 

1 - A;'L4 

(4.10) 

The generating functions based on the three dimensional irreducible representation 
of the tetrahedral group T are easily obtained from (4.6)-(4.10) due to the fact that 
T c  0. Without going into details, let us point out that the generating functions 9i, 
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j = 1 , 2 , 3 , 4 ,  (the representations of T are: rl the identity, r2  and r3 the two mutually 
conjugate ones of dimension one, and r4 is the representation of dimension three) for 
plethysms based on r4 can be written in terms of generating functions for the octahedral 
group as follows: 

9 1  = B1+82 9 2 =  9 3 =  333 9 4 = % 4 + 8 3 5 .  (4.11) 

5. Integrity bases 

Each generating function given in 00 3 and 4 describes a set of tensors. The set of 
tensors in each case can also be described in terms of a finite integrity basis, a finite set of 
elementary tensors or multiplets (the elementary permissible diagrams of Devi and 
Moshinsky (1969)). All the tensors of the set are then stretched (representation labels 
additive) products of powers of the elementary ones. Because of syzygies (relations 
between the elementary multiplets) certain products are incompatible and should be 
discarded to avoid double counting. 

A generating function is a convenient way of representing an integrity basis 
mathematically and makes possible various manipulations on them such as converting 
an integrity basis for group tensors into the corresponding one for subgroup tensors or 
the reverse. 

Since the generating function and the integrity basis carry the same information, it 
should be possible to translate one into the other; that is true, but the conversion is not 
effortless. 

The denominator factors of the generating function have the form 1 - X ;  the X and 
the numerator terms Y are products of powers of dummy variables carrying group 
labels and other information, such as degrees, as exponents. The elementary tensors 
correspond to the X and certain of the Y (the other Y are products of powers of the 
elementary tensors). Once the elementaryx and Y are identified, it is straightforward, 
by standard methods, to determine the algebraic form of the tensors they denote. The 
absence of products of elementary tensors implies corresponding syzygies concerning 
them. 

The simplest way to construct a tensor of a plethysm corresponding to a Young 
tableau {A} is to construct the states of the representation ( A )  of U(n).  They will in the 
first instance be of degree A I ,  A Z ,  . . . , A, in polynomials which, respectively, are 
antisymmetric in the first 1 ,2 ,  . . . , n copies of the basic n-component r tensor. To get a 
tensor of the desired symmetry, linear in each of p = E l  i A i  copies of the tensor, it is 
necessary to apply the Young symmetry operator to the states already obtained. By 
permuting 1 ,2 ,  . . . , p one obtains D{*) linearly independent copies of the tensor. 

We conclude this section by giving the finite integrity basis corresponding to 
plethysms based on (01) of O(5)  and ( l )O(l)  of SU(2)xSU(2). Bases for most of the 
others are found in the literature, or are easily constructed from the generating 
functions. 

For plethysms based on (01) of O(5) there are 17 members of the finite integrity 
basis. One of them has A 5  = 1 and all other labels zero. The rest, in the notation 
( A l A 2 A 3 A 4 ,  plpz)  are (1001,20), (1010,20), (0101,20), (0200,02), (0020, 02), 
(1100, Ol), (0011, Ol), (0110, Ol), (0110,21), (1110,20), (0111,20), (1101,20), 
(1011,20), (1020,211, (0201,21), (1111,20). 

Because of syzygies the following products should be discarded: the square of any 
one or product of any two of (0110,21), (1110,20), (0111,20), (1101, 20), (1011, 20), 
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(1020,21), (0201,21), (111,20); the product of any of (1101,20), (1011,20), 
(1111,20) with any of (0200,02), (0020,02), (1100, Ol), (0011, Ol), (0110,Ol); 
(0111,20) or (0201,21) with any of (1010,20), (0020,02), (0011, Ol), (0110,Ol); 
(1110,20) or (1020,21) with (0101,20), (0200,02), (1100,Ol) or (0110,Ol); 
(1001,20) with any of (0200,02), (0020,02), (1100, Ol), (0011, Ol), (0110, Ol), 
(0110,21), (1020,21), (0201, 21); (1010,20) with (0101,20), (0200,02), (1100, Ol), 
(0110,21)or (1101,20); (0101,20) with (0020,02), (0011, O l ) ,  (0110,21), (1011,20); 
the square of (1100, Ol), (0011, Ol), (0110,Ol). 

For plethysms based on (1)(0)0(0)(1) of SU(2)'xSU(2), there are 14 members of 
the finite integrity basis. One has h4 = 1, t = 2. The others, in the notation (h lh2h3;  
tm'm", m ) ,  are (010; 000, 0), (010; 200,0), (010; 111,0), (101; 200,0), (100; 110, l ) ,  
(100; 001, l ) ,  (001; 110, l ) ,  (001; 201, l ) ,  (101; 311,0), (200; 111,0), (101; 111,0), 
(002; 311,0), (010; 111,2). 

Thefollowingpairsareincompatible: (100; 110, 1) with (002; 311,O); (001; 201, 1) 
with (002; 311, 0); (001; 010, 1) with (200; 111,O); (001; 201, 1) with (200; 111,O); 
(200; 111,O) with (002; 311,O); (010; 111,2) with any of (101; 200,0), (101; 311,0), 
(101; 111,0), (200; 111,O) or (002; 311,O); and (010; 111,O) with (101; 200,O). In 
addition, the following product of three elementary multiplets is incompatible: 
(100; 110, l ) ,  (001; 201, l), (101; 111,O). 

6. Subjoining of a semi-simple group to a semi-simple group 

Subjoining is a weaker relation between two algebras than an embedding; thus if A 13 B 
then B is subjoined to A; however the inverse is not always true. The present section is 
devoted to this relation which, as far as we know, has not been described previously. It 
proves to be quite advantageous in calculating some generating functions. 

Consider two semi-simple Lie algebras A and B of ranks 1, 2 1,; denote by 4 and 9 
respectively representations of A and B of finite dimensions, and by W* and W' the 
corresponding weight systems. If one has also A 13 B then 4 may be decomposed: 

429=@$i  (6.1) 
i 

and 

where $I are irreducible representations of B contained in 4 of A;  B is a real 1, x lB 
matrix projecting the weights of W* into weights of W". 

We say that B is subjoined to A if for all finite representations 4 of A there exists a 
real 1, x la matrix B such that 

where the summations extend over some irreducible representations of B. We write 
A > B .  

The projection matrix B specifies the way B is subjoined to A; B is not uniquely 
determined by (6.3) but it is not necessary to distinguish two projection matrices which 
lead to the same sums on the right side of (6.3). It is natural to specify the subjoining of 
B to A, i.e. to fix 9, using the lowest representation of A. The defining property (6.3) is 
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given in terms of weights of representations; therefore one can also speak about a 
semi-simple Lie group subjoined to another semi-simple group. For simplicity we write 
also #J =Oi +iOj$j instead of (6.3). 

The simplest example which is not a group-subgroup relation is SU(2) > O(3). It 
can be specified using as #J the representation of dimension two. The weight system 
consists of two elements, W' = [l, -13. Then 9 is a 1 x 1 matrix, B = 2, and 

9W'=2[1, -1]=[2, -2]=[2,0, -21-[O] (6.4) 
where [2,0, -21 and [O] are the weight systems of O(3) representations of dimension 
three and one. It is obvious that such a 'reduction' is possible and unique for any 
representation of SU(2) using the same 9 = 2. Furthermore we can write a generating 
function for SU(2) > O(3). One easily verifies that it is 

= 1 + A(B2 - 1) +A2(B4 -B2 + 1) + . . . 1 
(1 +A)(l  -AB2) 

9 ( A ,  B) = 

(6.5) 
Here the negative signs in the power series are in one-to-one correspondence with the 
negative terms in (6.3). 

A less trivial example is the case O(5) > SU(2) X SU(2) where the subjoining is 
specified by 

3 (6.6) pw'l.0' = W'l"1' 

where (10) and (1) denote respectively the four- and two-dimensional representations 
of O(5) and SU(2). Here we are dealing with (1,O) > (1)(1) which differs from the usual 
embedding of SU(2)xSU(2) in O(5) which is given by (l,O)~(l)(O)O(O)(l). The 
generating function for O(5) > SU(2) x SU(2) which follows from (6.6) is given by 

-2%) (6.7) 
1 

( 
1 g= 

(l-N:)(l-N;?M'I)(l-N;?M:) 1-N1M1M2 l+N2 

where N1, N2 carry the O(5) labels, M1, M2 those of SU(2) x SU(2). To verify (6.7), 
convert it into a generating function for SU(2) x SU(2) weights and compare it to the 
known generating function for O(5) weights. 

An application of (6.7) would be the derivation of equation (3.6) for U(4) SU(2) X 

SU(2) using the chain SU(4) 2 O(5) > SU(2) X SU(2). 
A still more complicated example is the case SU(4) > O(5). The subjoining here is 

specified by 

(6.8) p ~ ' 1 . 0 . 0 '  = W'O.1'- w'O.0' 

where (1,0,0),  (0, 1) and (0,O) denote respectively the representation of SU(4) of 
dimension four and O(5) of dimension five and one. The generating function for 
SU(4) > O(5) implied by (6.8) provides an easy way to reduce any higher representation 
of SU(4) to representations of the subjoint group O(5);  it is 

g= 1 
(1 +Ni)(1 +N3)(1-N2)(1 -NiM2)(1-N3M2)(1 -N2M:) 

N2M2 ) i 1 - NlN3M: - 1 + N2M2 
1 

(6.9) 

where N1,  N2,  N3 carry the representation labels of SU(4), M I ,  M2 those of O(5). The 
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formula (6.9) can be verified by converting it into an SU(4) 2 SU(2) x SU(2) generating 
function. This is done by substituting into it, using (3.2), the known generating function 

1 
(1 -MiS)(l-MiT)(l-M2)(1-M2ST) 

for O(5) = SU(2) x SU(2) branching rules. The resulting SU(4) 3 SU(2) x SU(2) 
function can be compared with the known correct formula (see, for example, equation 
(3.6)). 

An obvious application of equation (6.9) is to substitute it, with (3.2), into the known 
generating function for SU(5) 2 SU(4), 

1 
(1 - A i ) ( l  -AiNi)(1 -A&i)(1 -A2N2)(1 -&N2)(1 -A3N3)(1 -A4N3)(1 -L) (1  

to obtain equation (3.7) for the branching rules U(5) = O(5).  
As another example we mention the subjoining of G2 to Sp(6) so that the defining 

representation (100) of Sp(6) contains the representations (10)0(00)  of G2, i.e., a 
septet minus a scalar. Since the branching rules for the chain SU(7) 3 SU(6) 3 Sp(6) are 
well known, the subjoining of G2 to Sp(6) would be helpful in obtaining branching rules 
for SU(7) G2 and hence the generating function for G2 plethysms based on a (10) 
tensor. In this case we could also work with the chain SU(7) = O(7) = G2. 

We have not found any relation between the subjoint and parent groups other than 
the implied relation between their weight diagrams. 

7. Antisymmetric and symmetric plethysms of SU(2) 

The generating functions of preceding sections were made for computation of general 
plethysms based on a fixed representation r of a group G.  In this section we derive a 
novel type of generating function for plethysms. We restrict the type of plethysm we 
consider (to antisymmetric or symmetric of fixed degree), but allow to run through all 
irreducible representations of SU(2). These plethysms can again be described by a 
single generating function. In principle, the procedure may be generalised to other 
groups and other plethysms. 

We denote by Q p  (L ,  S )  the generating function for completely antisymmetric 
plethysms of degree p based on an SU(2) tensor of an arbitrary rank 1 (dimension 
21 + 1). When Qp(L,  S )  is expanded into a power series 

(7.1) 

the variable L carries the rank I as its exponent, and S carries the SU(2) representation 
label s ;  npls is the multiplicity of an SU(2) representation of dimension 2s + 1 contained 
in the antisymmetric plethysm of degree p based on a tensor of rank 1. Our problem is to 
find Qp(L, S )  as an explicit function of the variables L1/2 and S1l2. Our strategy is first to 
write a recursion relation for multiplicities Nplm of weights in these plethysms, then 
rewrite it as a recurrence relation for the multiplicities npls of representations, and 
finally to transform that into a recursion relation for Q.,(L, S ) .  

We begin with a recurrence formula for multiplicities of weights, 

Nplm = N p / - l m  +Np-li-lm-i+Np-li-lm+i+Np-zi-lm 1 3 1 ,  (7.2) 
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which expresses the fact that each weight of degree p can be formed from weights of an 
(1 - 1)-tensor together with ( a )  neither weight 1 or -1, (b) one weight 1, ( c )  one weight -1, 
( d )  both weights 1 and -1. Because of antisymmetry a particular weight can be used at 
most once. The multiplicity npls of tensors of rank s can be expressed in terms of the 
multiplicities of weights: 

npls = - NIs+ 1 .  (7.3) 

Substitution for Nprs and Nplstl from (7.2) leads to the corresponding recurrence 
formula for npls : 

npis = npi-l + np-l 1-1 s - ~  + np-1 1-1 s + ~  - nP-l 1-1 1 - ~ - 1  

+ np-2 1-1 l a l .  (7.4) 

It is understood that npIs = 0 if any subscript is negative; in deriving (7.4) the relation 
Npr-m = Nplm was used. Multiplying (7.4) by LISs and summing over integer and 
half-odd values of I and s, one is led to a recurrence relation for the generating function 
@,(L, S )  = zI,snpIsL3s: 

(7.5) +L@,-2(L, S)+6po(1+L’~2)+apl(l+L 1 / 2  S 1 / 2  )+SP2L’l2). 

In (7.5) it is understood that terms of negative degree in S in the expansion of the right 
side are to be discarded. A prescription for discarding the negative power part of a 
rational function f ( T )  is 

( 7 . 6 ~ )  

(7.66) 

The right side of (7.6) is the sum of residues of poles in 77’ within the unit circle (1771 < 1 
for this purpose). 

with the help of (7.5) is a straightforward exercise in 
residues. We find 

To obtain @, from 

1 / 2  -1 @po(L, S )  = (1 - L  ) 

@1(L, S )  = (1 -L1/2S1/2)-1 

@,(L, S )  = L’/’[(l -L)(1 -L1/2S)1-1 

Q ~ ( L ,  S )  = ( L  + L ~ / ~ s ~ / ~ ) [ ( ~  - L ~ ) ( I  -LS)(I - L s )I 
(7.7) 

1 / 2  3 / 2  -1 

S )  = ( L ’ / ~ + L ~ s ~ ) [ ( ~  - ~ ) ( 1  -L3l2)(l  -LS2)( i  -L1/2S2)]-1.  

With (7.4) as the starting point, a recurrence formula in 1 can be deduced for 

where npls has the same meaning as in (7.1). 
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In fact, 

F'(U,s)=(l+US')(l+Us-')Fl-,(U, S ) - ( U , P ) F l - l  (7.8) 

terms of negative degree in S on the right side of (7.8) should be discarded. F'( U, S )  is a 
polynomial of degree 21 + 1 in U and fl(l + 1) or t ( l + f ) '  in S according to whether 1 is 
integral or half-odd. 

Symmetric plethysms based on SU(2) tensors are also of considerable interest. They 
correspond to the polynomial tensors of Patera and Sharp (1979a). By methods similar 
to those leading to (7.4), we find a recurrence relation for nbls, the number of s tensors in 
the symmetric plethysm of degree p based on an 1 tensor: 

121 .  (7.9) 

nbrs = 0 if any subscript is negative. 

we obtain a recurrence formula for the generating function @b(L, S )  = 
Multiplying (7.9) by L'Ss and summing over integer and half-odd values of 1 and s 

nL[sL'Ss: 

@b(L, S )  = - c LS'-2"@;-u(LS"-2", S )  l - L  ( p  u = l  v = o  

P rb.1 
- LS"-2"-'@;-,(Ls"-2", s-1) + 1 + L ' 4 ) .  

u = l  v = o  
(7.10) 

Terms of negative degree in S on the right of (7.10) are to be discarded, using (7.6). 
Iterating (7.10), we find 

@A@, S )  = (1 -L)-'i2 
@i(L, S )  = (1 -L1'2S1/2)-1/2 

@.;(L, S )  = (1 + L ~ / ~ s ~ / ~ ) [ ( ~  - L ~ ) ( I  -LS)(I - L  s )I 
@:(L, S )  = (1 + L ~ / ~ s ~ ) [ ( I  -L)(I - ~ ) ( 1  -LS~)( I  - L ~ / ~ S ~ ) ] - ~ .  

a q L ,  S )  = [(l  -L)(1 -L1/2s)]-1 (7.11) 
1/2  3 / 2  -1 

Parenthetically, we note that a generating function for third-degree plethysms of 
mixed symmetry is easily obtained. Write @&s = Xlsn&sL'Ss, where nils is the number of 
s tensors in the tensor product of three 1 tensors. Using the SU(2) Clebsch-Gordan 
generating function it is straightforward to show that 

1/2 1 /2  @!ls(LS) = (1 +L s +LS)[(l -L)(1 -L1/2s1/2)(1 -L1/2s3/2)]-1. 

Now substract from @&s the sum of @31s  and @ilS,  the generating functions for 
antisymmetric and symmetric plethysms of degree three (equations (7.7) and (7.1 1)) 
and divide by two. We get the desired generating function for third-degree plethysms of 
mixed symmetry: 

@y(& S )  = p s 1 / 2 [ ( 1  -L)(1 -L'/ZS1/2)(1 -ps3 /2) ] -1 ,  (7.12) 
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A recurrence formula in 1 for symmetric plethysms can be deduced from (7.9). 
Define F ;  (U, S )  = X'p,s nbl,UPSs. Then, after some manipulation, one gets 

F ; ( U ,  S )=[ ( l -US ' ) ( l -US- ' ) ] - ' [F; - i  (U,  S ) - S - ' F ; - i  (U, 5'-')I. 
(7.13) 

Only non-negative powers of S are to be retained on the right. Negative powers are 
most simply discarded by using ( 7 . 6 ~ )  on the first term and (7.6b) on the second term. 
We hope to report soon on the iteration of (7.13) up to 1 = 5. 

8. Concluding remarks 

Generating functions for plethysms based on any representation of a finite or compact 
continuous Lie group can, in principle, be calculated using the present procedure. 
Practically, however, one cannot go much higher with the dimension of r than dim r = 4 
or 5 with only hand computations. A skilful use of algebraic computer languages can, of 
course, put the limit much higher. At present it appears that all particular cases of 
plethysms of interest in applications can be treated. Our method complements the 
standard procedure for computing plethysms based on Littlewood's recurrence rules 
(King 1974), in which the dimension of r is unrestricted, but the degree of the plethysm 
is a small integer. 

All the generating functions calculated recently are brought to a special form such 
that all numerators contain only positive terms and every factor in any denominator is 
such that, if expanded into a power series, it contains but positive terms. Only from a 
generating function of such a type can one deduce information about the existence and 
degrees of elements of integrity bases (cf Gaskell etal 1978, Patera etal 1978, Desmier 
and Sharp 1979). It is not difficult to see that the special form is not unique; 
consequently the choice of an integrity basis is also not unique. It is a matter of 
convenience in each case which choice one wants to make (Patera and Sharp 1979a). 

A detailed investigation of known generating functions reveals a number of 
symmetry properties, not all of them being of trivial nature. Thus for instance, the 
generating function (3.6) for SU(4) 3 SU(2) X SU(2) does not change if hl and h3 are 
interchanged. It reflects the symmetry under complex conjugation of the SU(n)  
representation. In the numerator of a generating function which has been brought to a 
common denominator there is a correspondence between lower powers and higher 
powers. 

A generating function in its standard form may contain several fractions. Each of 
the denominators contains i ( n 2  + n + 1 - r )  factors, where n is the dimension of r on 
which the plethysms are based, 1 is the rank of G, and r is the number of its parameters. 
For a finite G,  both I and r are zero. 

It was demonstrated that for particular plethysms (the antisymmetric and symmetric 
ones in the example of 3 7) a different type of generating function can be found which 
puts no restriction whatsoever on the dimension of r. The examples (7.7) and (7.11) 
imply that 

4p(J5, S )  =L'p-1)'24;(1;, S )  O s p c 4 .  (8.1) 
It would be interesting to know whether (8.1) holds for p > 4. 

manipulation (composition) rules for generating functions (cf 0 3). 
Composition laws governing groups and their representations are reflected in 
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It should be interesting to study further the subjoining of Lie algebras and the 
possible interpretation of that relation in physics. 
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